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4. REMARKS ON OBLATE SPHEROID 

The calculations of Sec. 2 apply to oblate as well as to 
prolate spheroids. In this case too one has therefore just 
the curling, represented by (7), the coherent rotation 
which is known, and the mode analogous to the buckling 
treated in Sec. 3, which can be readily represented by 
transforming (11), (14), and (15) to oblate spheroidal 
coordinates. The fact that the curves in Fig. 1 cut at the 
sphere shows that for oblate spheroids the mode shown 
in Fig. 1 is higher than the curling, since it seems un
likely that the curves would cross again. However, it is 

INTRODUCTION 

THE dependence of the resistance of circular wires 
on diameter has been studied theoretically1-7 

and also experimentally6,8,9 for several metals. Experi
mental data of this type have frequently been analyzed 
by means of the Nordheim-Fuchs-Dingle1,2 formula, 

Peii=Pb+apbl/d, (1) 

which (assuming diffuse surface scattering) expresses 
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possible that one of the other eigenvalues, which is 
larger for prolate spheroids, would also cross these 
curves at the sphere, and would thus become smaller 
than curling for oblate spheroids, so that there still 
exists the possibility of a third mode. For lack of ade
quate tabulation of the oblate functions, this possibility 
could not be checked. 
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the effective resistivity, peff, of the wire in terms of the 
bulk resistivity, p*>, the mean free path, /, and the diame
ter, d. a is a dimensionless function of l/d which is 
unity in the Nordheim formula and varies from 0.75 to 
1 as l/d goes from zero to infinity in the Fuchs-Dingle 
formulation. Equation (1) is often used to calculate the 
product phi and the mean free path from size effect 
data.10 The value of pil obtained in this way is usually 
considerably larger than the value derived from 
anomalous skin effect data on polycrystalline samples. 

The purpose of this paper is to report measurements 
of the size effect in polycrystalline indium wires and to 
point out that Eq. (1) is not applicable to these data. 
An equation similar to (1) [Eq. ( lc)] , which is believed 
to be valid for the residual resistivity of thick "one-
dimensionally" polycrystalline wires of metals having 
arbitrary Fermi surfaces and an arbitrary dependence 
of the free path l(kf) (averaged over all final wave 
vectors), on the initial wave vector is derived. This 
formula is probably more appropriate to the case of 
"annealed" polycrystalline wires than is Eq. (1). 

10 J. L. Olsen, Electron Transport in Metals (Interscience Pub 
lishers, Inc., New York, 1962), Chap. 4, p. 84. 
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Size Effects in the Resistivity of Indium Wires at 4.2°K 
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Measurements are reported of the dependence of the resistance (at 4.2°K) of high-purity polycrystalline 
indium wires on the wire diameter. Data, which were taken on recrystallized wires extruded through dies 
of various sizes, and also on a single extruded wire gradually reduced in diameter by etching, are compared 
with those of Olsen. It is pointed out that any variation of the bulk electron free path over the Fermi surface 
must be taken into account in the analysis of size effect data on wires unless they are extremely small in 
diameter. A calculation of the size effect at 0°K in monocrystalline wires and in "unidimensionally" poly
crystalline wires having a diameter large compared to the mean free path is made for an arbitrary Fermi 
surface and free path anisotropy. The result of the calculation for the polycrystalline case, which is limited 
to metals having isotropic bulk conductivities, is similar to the Fuchs-Dingle result for the isotropic case 
except that the effective resistivity is much more strongly size dependent when a large mean free path 
anisotropy exists. It is concluded on the basis of this derivation that the size effect data on indium wires 
and anomalous skin effect data can be reconciled if a large anisotropy in the mean free path exists. 
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SAMPLE PREPARATION 

The indium wires were prepared by extruding samples 
of indium through dies of various diameters. Informa
tion on the origin of the samples is given in the first 
column of Table I. Four die sizes were used (5, 10, 20, 

TABLE I. Samples and results. 

Sample 
designat ion 

T a d a n a c (T) 

C 

Incoa A 

Incoa B 

Incoa C 

Incoa E 
(Etched) 

Source 

Cominco 
Products , 
Inc . 

Unknown 

Ind ium Corp. 
of America 

Ind ium Corp. 
of America 

Ind ium Corp. 
of America 

Ind ium Corp. 
of America 

Diameter 
(mm) 

00<5 

0.508 
0.254 
0.127 

oo 

0.508 
0.254 
0.127 

oo 
0.508 
0.254 
0.127 

oo 
0.508 
0.254 
0.127 

oo 
0.508 
0.254 
0.127 

0 0 

0.510 
0.452 
0.426 
0.392 
0.359 
0.298 
0.264 
0.200 
0.156 

10 4r 4 .2 /r273 a 

(0.66) 
1.053 
1.432 
2.283 

(1.02) 
1.374 
1.806 
2.600 
2.78 
3.11 
3.40 
4.06 
2.71 
3.01 
3.31 
4.03 
2.98 
3.34 
3.61 
4.33 
2.86 
3.17 
3.28 
3.22 
3.31 
3.32 
3.42 
3.51 
3.78 
3.92 

loh 

(mm) 

(0.113) 

(0.072) 

0.0266 

0.0273 

0.0250 

0.0260 

Symbol 

• 

O 

A 

V 

• 

+ 

a Ratio of resistance at 4.2°K to that at 273°K times 10*. 
b Bulk mean free path. 
0 Values listed for infinite diameters are bulk values obtained by an ex

trapolation described in the text. Values in parentheses are somewhat 
uncertain. 

and 40 mil). Immediately after extrusion, the wires 
consisted of large numbers of fine crystallites, as shown 
in Fig. 1. However, it was found that a gradual re-
crystallization occurred if the wires were allowed to 
stand at room temperature, and this process was ac
companied by a gradual decrease in the resistance 
measured at 4.2°K. This downward drift of resistance 

* < 

V ' ^ < 

"d^^^T^M 

FIG. 2. Photomicrograph of indium wire etched approximately 
a month after extrusion. The crystallites are now so large that the 
wire can be considered a "chain" of single crystals. Scale indicates 
0.1 mm. 

stopped after about a month and the final 4.2°K re
sistance was about 90% of the initial value. (All of the 
values reported are "final" values.) Annealing at higher 
temperatures did not markedly accelerate this recrystal-
lization process. After this recrystallization period, the 
wires consisted of much larger crystallites as shown in 
Fig. 2. Since the wires employed ranged between 6 in. 
and several feet in length, all of the wires still con
tained at least several hundred crystallites after re-
crystallization. 

I t is important to note that although the recrys-
tallized wires consist of numerous crystallites which are 
presumably randomly oriented, they are not truly 
poly crystalline in a three-dimensional sense. A line 
passed through the wire perpendicular to its axes will 
probably not intersect a grain boundary. Only lines 
nearly parallel to the axis will intersect a large number 
of grain boundaries in the wire. This configuration, 
which might appropriately be called "coarse" or "one-
dimensional" polycrystallinity, is probably similar to 
that attained in thin annealed wires of many metals. 
This distinction between "one-dimensional" and "three-
dimensional" polycrystallinity must be considered in 
the analysis of experimental results. 

Although the results on extruded wires seemed self-
consistent, the possibility existed that a radially in-
homogeneous distribution of impurities introduced 
during extrusion could give rise to systematic errors in 
the measurements. To check on this possibility, a 20-
mil wire was gradually reduced in diameter by etching 
in dilute aqua regia. Resistivity measurements were 
made after each etching step. The size dependence ob
tained in this manner agreed perfectly with that ob
tained on extruded wires of different diameters. 

^ FIG. 1. Photomicrograph of a portion of indium wire etched 
immediately after extrusion. Note the relatively smalFsize of the 
crystallites. Scale indicates 0.1 mm. 

EXPERIMENTAL PROCEDURE 

Resistivity measurements were made by a four-
terminal technique employing a Leeds and Northrup 
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FIG. 3. Size dependence of the effective resistivity of indium 
wires at 4.2°K. The abscissa is pbh/d, assuming pb20 = 0.6X10~11 

12-cm2. The symbols for our samples are identified in Table I. The 
symbols for Olsen's data (dashed lines) are: X, 4.2°K, + , ex
trapolated to 0°K. 

K-3 potentiometer for potential measurements. The 
wires were enclosed in a Pyrex tube, rilled with helium 
gas. This tube was inserted into an ice bath or directly 
into the helium storage Dewar depending on the tem
perature at which the measurements were to be made. 
The current was reversed to eliminate thermoelectric 
voltages, and data were taken at several currents to 
eliminate the possibility of sample heating. The wire 
diameters were measured with a microscope provided 
with a calibrated eyepiece and were checked against the 
ice temperature resistance. 

RESULTS 

The results are tabulated in Table I. Estimates of the 
bulk resistance ratios have been made by extrapolating 
to infinite diameter. (See Fig. 3.) Because of the un
certainty involved in this procedure, the bulk values 
for the two purest samples, T and C, are probably not 
very accurate. 

DISCUSSION 

According to Eq. (1) a plot of peu versus pbl/d should 
give a straight line, with a slope of unity in Nordheim's 
approximation. In the Fuchs-Dingle approximation, 
the same result should be found for l^>d, but for K<d, 
the slope will be 0.75, with a gradual transition between 
the two cases when l^d. The quantity p&/, which is a 
constant of the metal, can be obtained from anomalous 
skin effect data on polycrystalline samples by means of 
the relation, 

1018 1018 

Pbl=—~ ~ , (2) 
4V3TTV:£3 21S^S3 

where p& is measured in 12 cm, I in cm, and 2 is the 
surface conductivity in Or1 at a frequency v in the 
"extreme anomalous range". I t is also possible in 
principle to obtain values of pbl from measurements on 
thin wires and films. A summary of some published 
results for indium obtained by these various techniques 
is given in Table II . 

TABLE II. Values of pbh for indium obtained 
by various methods. 

Method pblo (O-cm2) Investigator 

Anomalous 
skin effect 

Anomalous 
skin effect 

Cylindrical wires 
Thin film 
Theoretical6 

0.89X10-11 

0.6X10-11 

1.4X10-11 

2.0X10-11 

0.54X10-11 

Roberts8 

Dheerb 

01senc 

Toxend 

»T. E. Faber, Proc. Roy. Soc. (London) A241, 531 (1952). 
bE. A. Da vies, Proc. Roy. Soc. (London) A155, 407 (1960). 
0 J. L. Olsen, Electron Transport in Metals (Interscience Publishers, Inc., 

New York, 1962), Chap. 4, p. 84. 
d A. M. Toxen, Phys. Rev. 123, 442 (1961). 
e Calculated assuming three conduction electrons per atom and a spherical 

Fermi surface. 

Examination of this table reveals that the values of 
pbl obtained from size effect data are considerably 
larger than those derived from the anomalous skin re
sistance. The anomalous skin effect values are in 
reasonable agreement with the free-electron model as
suming 3 electrons/atom. 

Since the magnetoacousticdata of Chandrasekhar and 
Rayne11 suggest a Fermi surface for indium very similar 
to that predicted by the free-electron model, it would 
appear that the values of pj obtained from size effect 
data are somewhat suspect. There is some indication 
in the literature that 0.6 X10~n 12-cm2may be the most 
accurate anomalous skin effect value, and it agrees 
fairly well with the free-electron model,12 so we have 
arbitrarily chosen this as the " t rue" value of p&Z. 

Figure 3 shows a plot of13 peff versus 0.6X10~n/d 
for wires extruded from the various samples. The data 
on the etched wire have been omitted for clarity. The 
data of Olsen8 at 4.2°K and also his extrapolations to 
0°K are plotted for comparison. 

The points for each sample lie on straight lines on 
this type of plot, those for the more pure samples having 
a slightly larger slope. The slope for Olsen's sample, 
which had a bulk resistivity about the same as our 
sample C, is larger than that for sample C both at 4.2 
and 0°K. The reason for the difference in slope at 4.2°K, 
between our sample and Olsen's is not known but the 

11 J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 125, 1952 
(1962). 

12 In aluminum, which has a Fermi surface very similar to that 
of indium, the anomalous skin effect result agrees perfectly with 
the prediction of the free-electron model. [E. Fawcett, in The 
Fermi Surface, edited by W. A. Harrison and M. B. Webb (John 
Wiley & Sons, Inc., New York, 1960), p. 197.] 

13 Determined from the resistance ratios using p273 = 8.1X10~6 

£2-cm. 
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increase in slope between 0 and 4.2°K has been at
tributed to an enhanced effect of electron-phonon scat
tering on the resistivity due to boundary scatter
ing.4,5-7>8 (The larger slope for our samples C and T may 
also be a result of this phenomenon.) 

Using the bulk resistivity values (listed in Table I) 
obtained by extrapolation of the lines in Fig. 3 to in
finite diameter (i.e., to zero on the abscissa), and em
ploying the result, p&/=0.6X10_11 O-cm-2 we have cal
culated the bulk mean free paths for each sample. These 
values are also listed in Table I. Knowledge of the mean 
free path permits the construction of a universal plot 
based on the relation [obtained by dividing Eq. (1) by 
Pb]: 

pe/pb=l+al/d. (la) 

Plotting Pe/pb versus l/d should yield a universal curve 
which approaches a straight line with slope f as l/d 
approaches zero. 

A plot of this type for the less pure samples is shown 
in Fig. 4. The data on samples UC" and UT" are 
omitted because of the uncertainty in the determination 
of pb by extrapolation, but the data on the wire re
duced in diameter by etching have been included. When 
plotted in this way, the data lie on a straight line with 
a slope of (2 .9 )X |^2 .2 . The slope of the Fuch's-
Dingle relation (la) increases from 0.75 (l/d—0) to 
about 0.88 over the range of l/d covered by the data. 
Thus the slope of the experimental line is between two 
and three times that predicted by the Fuch's-Dingle 
relation if p&/=0.6X10~n 12-cm2, and an equation of 
the form, 

Poff/p6= l+yal/d (lb) 

is suggested, where y lies between 2 and 3. 
The Fuchs-Dingle formula was derived assuming a 

spherical Fermi surface and an isotropic relaxation 
time, and it is usually implied that the result is valid 
for the residual resistance of a polycrystalline wire even 
though the initial assumptions are incorrect for the 
metal in question. If we pass over the question of grain 
boundary scattering, it seems that the result should be 
valid if the electron traverses several crystallites 
between encounters with the surface of the wire. How
ever, in the case of "one-dimensional" poly cry stal-
linity, where the average distance between grain 
boundaries is large compared to the bulk mean free 
path, most of the electrons do not traverse more than 
one or two crystallites between encounters with the 
surface, and the Fuchs-Dingle result does not apply. 

The correct result for this case is obtained by calcu
lating the size effect for a monocrystalline wire allowing 
the Fermi surface and mean free path anisotropy to be 
arbitrary and then using the fact that the resistance of 
the polycrystalline wire is essentially the sum of the re
sistances of the individual crystallites when the length 
of the crystallites is large compared to the bulk free 
path. The calculation is carried out in Appendixes I and 

I I and the result for a cubic metal or one in which the 
conductivity is isotropic14 is 

Peff/P6= l + (P)/ml/d , (l«d,dg) , (lc) 
where 

<0-z= fi(kf)dsf/sf, (P)=fp(kf)dsf/sf, 

the integrals being taken over the Fermi surface. (The 
symbol dg signifies the average distance between grain 
boundaries.) Comparing (lb) with (la) and noting that 
a = f for l<^d, we see that for thick wires, y in (lb) is 
given by 

y=(p)/(iy, 

which is unity if the mean free path is constant but is 
always greater than unity if the mean free path is a 
function of k/, the wave vector at the Fermi surface. 

Thus the apparent discrepancy between the size 
effect data on wires and the anomalous skin effect data 
can be understood if a large mean free path anisotropy 
exists. (The meaning of the word "anisotropy" as it is 
used here has been generalized.15) However, since our 
measurements were made at 4.2°K, the resistivity 
values we obtained are not the residual resistivities. 
Because of the effect suggested by Olsen8 and discussed 
by several others,4-5'7 the slopes of our curves in Figs. 3 
and 4 are larger than they would have been if the meas
urements had been made at very low temperatures. 
This means that a correction, the magnitude of which 
can be estimated roughly by comparison of Olsen's 
4.2 and 0°K (extrapolated) curves in Fig. 4, should be 
applied to our data in order to find the slope correspond
ing to the residual resistivity. 

Although we have no reliable way of calculating this 
correction, we can see that it must be fairly small for 
the wires represented in Fig. 4, because they had bulk 
resistivities more than twice as large as Olsen's sample. 

14 Although indium is not quite cubic, the conductivity anisot
ropy at 273 °K is only about 5%. 

15 The crystallite orientation in the wires is probably not com
pletely random, but the influence of a preferred crystallite orien
tation on the result may not be as great as one would at first 
suppose, at least for cubic multivalent metals. This is because the 
controlling factor in the size effect is the variation of the mean free 
path over the Fermi surface. If the Fermi surface is re-entrant or 
consists of more than one sheet, as it does in multivalent metals, 
then electrons at several points on the Fermi surface character
ized by different mean free paths may be moving in the same 
direction. Thus, anisotropy over the Fermi surface does not 
necessarily imply spatial anisotropy, but only the spatial anisot
ropy of the mean free path leads to a dependence of the size effect 
on orientation. A hypothetical case which would exhibit a varia
tion of mean free path over the Fermi surface without spatial 
anisotropy would be a semimetal possessing two spherical bands 
characterized by different mean free paths. This case can be 
handled exactly by an extension of the Fuchs-Dingle formula and 
the result for thick wires is idential with Eq. (B7). However, for 
very thin wires, Eq. (1) (with a=l) holds. Since these results are 
valid for single crystals and for unidimensionally polycrystalline 
wires regardless of any preferred orientation, we see that spatially 
anisotropic mean free path is not a necessary condition for the 
validity of (B7) with (l2)/(l)2>l and that, when the spatial 
anisotropy is slight, the existence of a preferred orientation of 
crystallites will have little effect on the results, 
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o cos ai a i s 0.2 0.25 0.3 

FIG. 4. Comparison of size dependence of the effective resis
tivity of indium wires at 4.2°K with that predicted by the Fuchs-
Dingle relation. 

Allowing roughly for this correction, one must still 
have 7 ^ 2 to bring the size effect data and the anoma
lous skin effect data into agreement. Some supporting 
evidence for anisotropic mean free paths in indium is 
found in the high-field magnetoacoustic attenuation 
data of Chandrasekhar and Rayne.11 
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APPENDIX A 

Approximate Calculation of the Residual Resistance 
of Monocrystalline Wires for an Arbitrary 

Fermi Surface and Mean Free Path 
Anisotropy and Assuming Dif

fuse Surface Scattering 

The bulk conductivity, along the ith principal axis 
of the conductivity tensor of an impure metal at 0°K, 
is given approximately by 

ffb* = , (8 .b*)2 /o(k/)^/ , (Al) 

at k/ on the Fermi surface)], b* is a unit vector parallel 
to the ith principal axis, and /o(k/) is the mean distance 
traveled between scattering events by an electron 
having a wave vector k/. (The subscript 0 is omitted 
in the body of the article.) The integration is over the 
Fermi surface in wave vector space. For a cubic metal, 
or one in which the conductivity is isotropic, (Al) 
reduces to 

(T& = -

where 

Zo(k/Ksv= ksf 
12^n / • 

Z0= flo(kf)dSf/Sf (A3) 

where s is a unit vector parallel to the direction of 
motion of an electron p.e., parallel to \f(=ft~1 grad/£e, 

is the bulk mean free path and Sf is the area of the 
Fermi surface in wave vector space. 

Chambers16 has pointed out that the conductivity of 
a wire for the case of a spherical Fermi surface and 
isotropic mean free path can be calculated from a 
"kinetic theory" formula, and that the result is the 
same as that obtained from the solution of the Boltz-
mann equations in the relaxation time approximation 
by Fuchs and Dingle,12 if the free path at a point in the 
wire is taken to be 

l=l0(l-<rOP'l°), (A4) 

where OP is the distance from the point to the surface 
of the wire measured along the direction of motion of 
the electron, and the surface scattering is assumed to be 
diffuse. 

An obvious generalization of Chambers' argument to 
the case of an arbitrary Fermi surface and an arbitrary 
mean free path anisotropy is to calculate the contribu
tion of a volume element at a point 0 in the wire to the 
total conductance by means of formula (Al) with 
/o(k/) replaced by 

/««(k,) = Jo(k/) (1 - e-op/ioW). (A5) 

Let dA be an increment of area on the cross section 
(perpendicular to the wire axis) of the wire shown in 
Fig. 5, and consider the volume element generated by 
projecting dA parallel to the wire axis. The contribution 
of this volume element to the conductance (per unit 
length) of the wire is 

dLt= / (s-hyioik^il-e-or^dSfdA , (A6) 
4:T%J 

where b; is parallel to the wire axis (i.e., if the con
ductivity is not isotropic, then we require that the wire 
axis be parallel to a principal axis of the conductivity 
tensor). If 0 is the angle between s and b; (see Fig. 5) 
then the effective conductivity of the wire is given by 

***=—[ J / / cos2eio(kf) 
iraA^fi/J J 

X(l-e~0P'/l»s™6)dSfdA. (A7) 
16 Rf G. Chambers, Proc. Roy. Soc. (London) A202, 378 (1950), 
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FIG. 5. Geometrical construction used in calculating resistivity 
of monocrystalline wire. The electron under consideration is 
located at 0 and is moving in the direction OP. hi is parallel to the 
axis of the wire and to a principal axis of the bulk conductivity 
tensor. 

where a is the radius of the wire and OP' is the pro
jection of OP on the cross section through 0. For 0 
fixed, 0Pf is a function of the azimuthal angle, ^ 
(see Fig. 5). If we now interchange the order of inte
gration in (A7), we can keep the angles 6 and \F which 
specify the direction of OP fixed while 0 sweeps over 
the cross section. Thus, we obtain 

cos26lo(kf) 

r l 
X 

Lira' 
(l-e-°p,/l°»in6)dA \dSf. (A8) 

-2/ J 
l]dSf. 

The expression in brackets in (A8), which we call 1(0), 
can be shown to reduce to 

where 

7(/3)=l- [ 1 - / 0 8 ) ] , 
x/3 

/08) 
Jo 

g-fi sin? s i n 7 ( £ 7 

(A9) 

(A10) 

and fi=d/[Jo(kf) sin0], d=2a. The properties of J{0) 
can be summarized as follows17: 

J{f$)-+p-\ 0>1O (All) 

/ ( /?)-* l-ix/H-l/32 , 0 « 1 . (A12) 
Also, 

J(P)^ 
" 2 2 
/oOS)+-/»08) /40S) 

3 15 
0 0 ~i 

+-/ .C8) . 7,09)+ • • • \--IiQ3) (A13) 
35 63 J 2 

- K i i 0 8 ) - A G 8 ) ] + 1 , 
17 We are indebted to E. M. Baroody and M, L. Glasser for 

these results, 

where / „ are modified Bessel functions of the first kind, 
and Li(J$) is a modified Struve function. A discussion 
of J(0), and of some closely related functions, as well 
as a rather complete tabulation of J(0) has been given 
by Miiller.18 Some values of 1(0) which are accurate to 
three significant figures are given in Table I I I . 

TABLE III. Selected values of the function 

/ (0) - 1 - (4/TT/3) (1 - f -/2 e-P sin v sinydy) . 

13 

0 
0.5 
1.0 
1.5 
2.0 
3.0 
4.0 
5.0 

10.0 

I(fi) 
0 
0.184 
0.323 
0.430 
0.512 
0.629 
0.705 
0.756 
0.874 

If d /7 0 «l (thin wire), then P( = d/h sin0) is also « l 
except when 6 is small. For very thin wires, the contri
bution from portions of the Fermi surface where /3 is 
not small should be negligible and substituting (A12) 
and (A9) into (A8) should be a good approximation. 
The result of this substitution is 

\ /*cos20 fd \ 
• ) / dSf, (—>0 (A14) 
J J sin6> Vn / 

/ e2 \ / 4 J " 

\AT%J\SJJ sine"0' 

a result given (without derivation) by Alexandrov and 
Kaganov.6 

As to the accuracy of Eq. (A14), one can ask whether 
it is correct in the limit as d/lo —•> 0, and, if so, for what 
range of d/k does it provide a sufficiently good approxi
mation. The first part of the question can be answered 
with little detailed knowledge of the Fermi surface. For 
example, a finite value of the curvature of the surface 
at 6 = 0 would be a sufficient condition for the correct
ness of the limit. The second part cannot be answered 
without more knowledge of the Fermi surface. For some 
small, but finite, value of d/lo one would need to esti
mate the error caused by the poor representation of 
1(0) in the small 6 region. This estimate cannot be 
made without some specific information on the value 
of the curvature near 6=0. If one attempts to estimate 
corrections to (A 14) by using further terms in the ex
pansion (A12) [which can be obtained by expansion of 
the exponential in (A10)], it is found that the series 
obtained in place of (A14) diverges. This happens 
because the succeeding terms contain integrals similar 
to (A14) having higher powers of sin# in the denomina
tor of the integrand. These integrals are in general un
bounded. However, evaluation of approximate correc-

18 R. Miiller, Z. Angew. Math, Mech. 19, 36 (1939). (See p. 54,) 
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B A T E , M A R T I N , A N D H I L L E 

wire of length L is [using (A 15)] 

PI „ / °i±l _ h I T(l2 /4:TT%\ 

^ ^ 1— *-iTEM-77 
FIG. 6. Diagram of "unidimensionally" polycrystalline wire X2_^ 

showing electron trajectories [along s;(k/)] corresponding to a * 
given k/ in each crystallite. (The letter i is now the crystallite 
index.) 

Li/L 

cos?dil0dSf- (4/W) / cos20; smOitfdSf 

(B2) 
tions by other techniques indicates that (A14) will 
hold (w/y for very small values of d/hP o r Cus ing (A 1) a n d t h e c u b i c symmetry] 

The conductivity of a thick wire (d^>h) can be found j . l i e ^ u n u . u t Li v JL Ly u i a, LXJ- I^JV v v m _ ^ / / t ' o ; v.a.j.1 U\^ I U U I I U _ 1 9 /» 

by noting that, since J(fi) goes to zero as fir2 for large 0, peo^pb V (L,/L) 1 / 
r / /> \ -« /i / n / J / 7 ^ -nW * L. TrdlnSfJ J ( /3 )~ l -4 / i r / 3 , (rf//0>10). 

Substituting this into (A8) we obtain w n e r e 

cos20* smdih2(kf)dS 
- l 

(B3) 

/ e2 \ / 4 \ /* . Jo— J lo(kf)dSf/Sf 
.1 ) ( — ) / cos2dsmdlo2dSf 

/ j v When /o/d<3Cl, the bracketed expression in (B3) is of 
(— > 1 0 J . (A15) the form, 

APPENDIX B so that we can write 

Approximate Calculation of the Residual Resistance / 12 r \ 
of a Thick "Unidimensionally" Polycrystal- p^pJl+— £ V ^ 7 cos20< smBUdSf) . (B4) 

line Wire for Arbitrary Anisotropy \ wkS/d % J I 
but Cubic Symmetry 

If we interchange the order of summation and integra-
We assume that the average distance, dg, between tion in the second term of (B4) we must then consider 

grain boundaries is large compared to the mean free the sum 
path and to the diameter of the wire. This situation is ]T Li/L cos20; sin0;. (B5) 
illustrated schematically in Fig. 6. The resistance of the * 
wire in this case will be just the sum of the resistances _P , . . r . ... . , ._ . . 
of the individual monocrystalline sections which com- I f t h e 0™ntation of the crystalites;is random" this 
prise it. The conductance of the tth crystallite is sum just becomes the average of (cosV surf) over a unit 
,r A n\ sphere (or over a solid angle of 47r): 

± = ^ ( — \ f cos*0Mkf)Wi)dSf, < c o s V sine^~ / c o s ^ sm20dd=^- . (B6) 

pt=d/Lh<M **<•], (Bi) T h u s > ( B 4 ) b e c o m e s 

where Li is the length of the crystallite and 0* is the _ r /7 2\//7\o37 /-,-> ,i „i J \ m ^ 
angle between the velocity vector at k , and the wire Pe-P>Ll+Vo )/{h) *k/d}, (/««<*, d0) (B7) 
axis in the ith. crystallite. The effective resistivity of a where 

19 See also Chambers' discussion of the limiting case for thin 
films. [R. G. Chambers, Can. J. Phys. 34, 1395 (1956).] J 



FIG. 1. Photomicrograph of a portion of indium wire etched 
immediately after extrusion. Note the relatively small size of the 
crystallites. Scale indicates 0.1 mm. 



FIG. 2. Photomicrograph of indium wire etched approximately 
a month after extrusion. The crystallites are now so large that the 
wire can be considered a "chain" of single crystals. Scale indicates 
0.1 mm. 


